Transforming the Non-Linear PDES Governing the Viscous Fluid Flow into Nonlinear ODES and Investigation of Influence of Inclined Magnetic Field and Thermophoresis on Heat and Mass Transfer Wedge

Nzyoka F. K. ${ }^{1}$, Kimathi M. ${ }^{2}$, Magua A. ${ }^{3}$, Kinyanjui J. N. ${ }^{4}$, Kamau J.N. ${ }^{5}$
${ }^{1.2,3,5}$ Department of Mathematics, Kenyatta University P.O BOX 43844-00100, Nairobi
${ }^{4}$ Department of Pure and Applied Science, Kirinyaga University, P.O Box 143-10300 Kerugoya

Abstract

Nonlinear partial differential equations are transformed into nonlinear ODES using some similarity transformations. From these ODES, the numerical solutions have been obtained using the collocation method, which is in turn implemented in MATLAB software via the bvp4c function. The results of the simulation are presented graphically to depict the effects influence of the above stated parameters on the velocity, temperature and concentration profiles. The results of this study reveal that for this study, fluid velocity is increased by increase in magnetic inclination angle, while concentration and fluid temperature decreases with increase in inclination angle.

Keywords: ODE, PDE, Boundary Layer, MHD, inclined angle.

1. PRELIMINARIES

1.1 NOTATION AND TERMINOLOGY:

f Velocity function, F :Vector with values of f, J :Jacobian , p Fluid pressure, Re Reynolds number, U Free stream velocity, u X-component of velocity, v Y-component of velocity, T Temperature, T_{∞} Free stream temperature, T_{w} Temperature at the surface, U_{∞} Free stream velocity f_{w} Suction or injection, $(x, y) \quad$ Axis direction

1.2 INTRODUCTION:

Fluid flow in a porous medium with mass and heat transfers is of considerable significance from engineering and sciences point of view.(Kandasamy. R., 2005); studied chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects.(Goldsmith and May, 1966); studied the thermophoretic transport involved in simple one-dimensional flows for the measurement of thermophoretic velocity. (Hales. J.M., 1972); studied the thermophoretic deposition in geometry of engineering interest and they solved the laminar boundary layer equations for simultaneous aerosol and steam transport to an isothermal vertical flat surface situated adjacent to a large body of an otherwise quiescent air-steam-aerosol mixture. (Derjagun B.V. Rabinorich Ya.I., 1976); Performed various experiments on the thermophoresis of aerosol particles and measured the thermal slip coefficient to calculate thermophoretic velocity, and then compared it with a theoretical one.

2. GOVERNING EQUATIONS

All The equations governing the fluid flows of any kind are based on general laws of conservation of mass, momentum and energy. They are modified to perfectly suit a particular fluid flow. Governing equations are presented and modified subject to the assumption made in order to generate specific equations. In this paper, we consider assumptions made, the general conservation equations of mass and momentum and finally the electromagnetic equations.
$(\vec{J} \times \vec{B})_{x} \quad \stackrel{\rightharpoonup}{J}=\delta(\vec{E}+\vec{V} \times \vec{B})$
$\Rightarrow \approx \delta(\vec{V} \times \vec{B})$
Where δ is the electrical conductivity coefficient.
$\vec{B}=\left(-B_{o} \cos \alpha,-B_{o} \sin \alpha, 0\right)$
$\vec{J}=\sigma(\vec{E}+\vec{V} \times \vec{B}) \approx \sigma(\vec{V} \times \vec{B})$
$\vec{V} \times \vec{B}=\left|\begin{array}{ccc}i & j & k \\ u & 0 & 0 \\ -B_{o} \cos \alpha & -B_{o} \sin \alpha & 0\end{array}\right|=i(0)-j(0)+k\left(u B_{o} \sin \alpha-0\right)$
$\vec{J}=\sigma u B_{o} \sin \alpha \widehat{k}$
$\vec{J} \times \vec{B}=\left|\begin{array}{ccc}i & j & k \\ 0 & 0 & \sigma u B \sin \alpha \\ -B_{0} \cos \alpha & -B_{0} \sin \alpha & 0\end{array}\right|=i\left(-\sigma u B_{0}^{2} \sin ^{2} \alpha-j\left(\sigma u B_{0}^{2}\right) \cos \alpha \sin \alpha\right)+\vec{k}(0)$
$(\vec{J} \times \vec{B})_{x}=-\frac{\sigma B_{0}^{2} \sin ^{2} \alpha}{\rho}=\frac{\sigma B_{0}^{2}}{\rho} \sin ^{2} \alpha(u-U)$
$0^{0} \leq \alpha \leq 90^{\circ}$
$\frac{\partial u}{\partial t}+\frac{\partial(u)^{2}}{\partial x}+\frac{\partial(u, v)}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\partial^{2} u}{\partial y^{2}}-\frac{\sigma B_{0}^{2}}{\rho} \sin ^{2} \alpha(u-U)$
From equation (3.7) we define
$\frac{D T}{D t}=\frac{\partial T}{\partial t}+(\vec{V} . \nabla) T=\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}$
Substituting equation (3.17) into equation (3.7) and bringing in the magnetic inclination term from equation (3.13) we obtain,

$$
\begin{equation*}
\frac{\partial T}{\partial t}+\frac{\partial(u T)}{\partial x}+\frac{\partial(v T)}{\partial y}=\frac{1}{\rho C p}\left(k_{f} \frac{\partial T}{\partial y}\right)+\frac{\mu}{\rho C p}\left(\frac{\partial u^{2}}{\partial y}\right)+\frac{\sigma B_{0}^{2}}{\rho C p} \sin ^{2} \alpha(u-U)^{2} \tag{3.18}
\end{equation*}
$$

From equation (3.8), the concentration equation is shown as follows
$(\vec{q} \cdot \nabla) C=(u i+v i) \cdot\left(\frac{\partial i}{\partial x}+\frac{\partial j}{\partial y}\right) C$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 5, Issue 2, pp: (40-51), Month: October 2017 - March 2018, Available at: www.researchpublish.com
Similarly, $\nabla^{2} C=\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}$
But $\frac{\partial C}{\partial t}=\frac{\partial}{\partial x}\left((D) \frac{\partial C}{\partial x}+\frac{\partial}{\partial y}\left(D \frac{\partial C}{\partial y}\right)\right) \Rightarrow \frac{\partial C}{\partial t}=D \nabla^{2}$
Similarly $\frac{\partial u C}{\partial x}+\frac{\partial v C}{\partial y}=C\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)$ but $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ hence equation 3.19 becomes,
$\frac{\partial C}{\partial t}+\frac{\partial(u C)}{\partial x}+\frac{\partial(v C)}{\partial y}=D \frac{\partial^{2} C}{\partial y^{2}}-\frac{\partial}{\partial y}\left(v_{T} C\right)$
Introducing the magnetic inclination $(\vec{J} \times \vec{B})_{x}$ defined in equation (3.13), the equation (3.15) becomes,
$\frac{\partial u}{\partial t}+\frac{\partial(u)^{2}}{\partial x}+\frac{\partial(u, v)}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\partial^{2} u}{\partial y^{2}}-\frac{\sigma B_{0}^{2}}{\rho} \sin ^{2} \alpha(u-U)$
From equation (3.7) we define
$\frac{D T}{D t}=\frac{\partial T}{\partial t}+(\vec{V} . \nabla) T=\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}$
Substituting equation (3.17) into equation (3.7) and bringing in the magnetic inclination term from equation (3.13) we obtain,
$\frac{\partial T}{\partial t}+\frac{\partial(u T)}{\partial x}+\frac{\partial(v T)}{\partial y}=\frac{1}{\rho C p}\left(k_{f} \frac{\partial T}{\partial y}\right)+\frac{\mu}{\rho C p}\left(\frac{\partial u^{2}}{\partial y}\right)+\frac{\sigma B_{0}^{2}}{\rho C p} \sin ^{2} \alpha(u-U)^{2}$
From equation (3.8), the concentration equation is shown as follows
$(\vec{q} . \nabla) C=(u i+v i) .\left(\frac{\partial i}{\partial x}+\frac{\partial j}{\partial y}\right) C$
Similarly, $\nabla^{2} C=\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}$
But $\frac{\partial C}{\partial t}=\frac{\partial}{\partial x}\left((D) \frac{\partial C}{\partial x}+\frac{\partial}{\partial y}\left(D \frac{\partial C}{\partial y}\right)\right) \Rightarrow \frac{\partial C}{\partial t}=D \nabla^{2}$
Similarly $\frac{\partial u C}{\partial x}+\frac{\partial v C}{\partial y}=C\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)$ but $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$ hence equation 3.19 becomes,
$\frac{\partial C}{\partial t}+\frac{\partial(u C)}{\partial x}+\frac{\partial(v C)}{\partial y}=D \frac{\partial^{2} C}{\partial y^{2}}-\frac{\partial}{\partial y}\left(v_{T} C\right)$

3. MAIN RESULTS

In order to obtain the dimensionless form of the governing equations together with the boundary conditions we introduce the following non-dimensional variables:
$\eta=y \sqrt{\frac{m+1}{2}} \sqrt{\frac{x^{m-1}}{\sigma^{m+1}}, \psi=\sqrt{\frac{2}{m+1} \frac{v x^{\left(\frac{m+1}{2}\right)}}{\sigma^{\left(\frac{m+1}{2}\right)}}}} f(\eta), \theta(\eta)=\frac{T-T_{\infty}}{T_{w}-T_{\infty}}, \theta(\eta)=\frac{C-C_{\infty}}{C_{w}-C_{\infty}}$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 5, Issue 2, pp: (40-51), Month: October 2017 - March 2018, Available at: www.researchpublish.com

Where η is the similarity variable, ψ is the stream function that satisfies the continuity and is defined by is defined by $u=\frac{\partial \psi}{\partial y}$ and $v=-\frac{\partial \psi}{\partial x}$ therefore we have

And $u=U(x, t) f^{\prime}$
$v=-\sqrt{\frac{2}{m+1} \frac{v x^{\left(\frac{m+1}{2}\right)}}{\sigma^{\left(\frac{m+1}{2}\right)}}}\left(f+\frac{m-1}{m+1} \eta f^{\prime}\right)$
Where f non-dimensional stream function and prime is denotes differentiation with respect to η. For a variable thermal conductivity is considered as:
$k_{f}=k_{\infty}\left(1+r \frac{T-T_{\infty}}{T_{W}-T_{\infty}}\right)$ Where k_{∞} of the ambient fluid and γ is the thermal conductivity variation parameter,
Chiam (1998).
Other dimensionless parameters used in the study include,
$\beta=\frac{2 m}{m+1}$ Wedge angle, $\Omega=\beta \pi$ Wedge angle parameter, $p r_{\infty}=\frac{\mu c_{p}}{k_{\infty}}$ Prandtl number, S_{c} Schmidt's number
$N_{t}=\frac{T_{\infty}}{T_{w}-T_{\infty}}$ Thermophoresis parameter, $N_{c}=\frac{C_{\infty}}{C_{w}-C_{\infty}}$ Concentration ratio
$H a=B_{0} \sqrt{\frac{\sigma x}{\rho u}} \quad$ Local Hartman number, $E_{C}=\frac{u}{c_{p}\left(\frac{T_{\infty}}{T_{w}-T_{\infty}}\right)}$
Eckert number
$f_{w}=\frac{v_{w}(x, t)}{\left[\sqrt{\frac{m+1}{2}} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}}\right]}$ Wall mass transfer coefficient.
Employing the transformations, we obtain the following equations;
Equation (3.16) is transformed to an ODE as follows:
We differentiate the LHS terms of equation (3.16) as shown below

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial t} \frac{\partial f^{\prime}}{\partial t}+f^{\prime} \frac{\partial u}{\partial t}=u \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial t}+f^{\prime} \frac{\partial u}{\partial t} u f^{\prime \prime} \frac{\partial \eta}{\partial t}+f^{\prime} \frac{\partial u}{\partial t} \tag{4.4}\\
& \frac{\partial u^{2}}{\partial x}=\frac{\partial u^{2}}{\partial u} \frac{\partial u}{\partial x}=2 u \frac{\partial u}{\partial x}=2 u f^{\prime} \frac{\partial}{\partial x}\left[u f^{\prime}\right]=2 u f^{\prime}\left[\frac{u \partial f^{\prime}}{\partial x}+f^{\prime} \frac{\partial u}{\partial x}\right]=2 u f^{\prime}\left[u f^{\prime \prime} \frac{\partial \eta}{\partial x}+f^{\prime} \frac{\partial u}{\partial x}\right] \tag{4.5}
\end{align*}
$$

$$
\frac{\partial(u v)}{\partial y}=u \frac{\partial v}{\partial y}+v \frac{\partial u}{\partial y}=u f^{\prime} \frac{\partial v}{\partial y}+v \frac{\partial}{\partial y}\left(u f^{\prime}\right)=u f^{\prime}\left[\begin{array}{l}
-\sqrt{\frac{2}{m+1}} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}} \tag{4.6}\\
\left(\frac{\partial f}{\partial \eta}+\frac{m-1}{m+1} \frac{\partial \eta f^{\prime}}{\partial y}\right)
\end{array}\right]+
$$

$$
\left[-\sqrt{\frac{2}{m+1} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}}\left(\frac{\partial f}{\partial y}+\frac{m-1}{m+1} \eta f^{\prime}\right)}\left(u f^{\prime \prime} \frac{\partial \eta}{\partial y}+f^{\prime} \frac{\partial u}{\partial y}\right)\right]
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 5, Issue 2, pp: (40-51), Month: October 2017 - March 2018, Available at: www.researchpublish.com

From equation (3.15) we define
$\frac{\partial u}{\partial y}=U f^{\prime \prime} \frac{\partial \eta}{\partial y}+f^{\prime} \frac{\partial U}{\partial y}$
$\frac{\partial u}{\partial t}=v x^{m} \frac{\partial \delta^{-(m+1)}}{\partial t}=v x^{m}(-m-1) \delta^{-m-2} \frac{\partial \delta}{\partial t}=\frac{v x^{m}}{\delta^{(m+1)}}\left(\frac{-m-1}{\delta}\right) \frac{\partial \delta}{\partial t}=u\left(\frac{-m-1}{\delta}\right) \frac{\partial \delta}{\partial t}$
And $\frac{1}{\rho} \frac{\partial p}{\partial x}=u \frac{1}{\rho} \frac{\partial u}{\partial x}=\frac{v x^{m}}{\sigma^{m+1}} \frac{v x^{m}}{\sigma^{m+1}} \frac{m}{x}$
Then substituting equations (4.11)-(4.16) into equation (3.16) we get equation (4.10) below

$$
\left.\begin{array}{l}
u f^{\prime \prime} \frac{\partial \eta}{\partial t}+f^{\prime} \frac{\partial u}{\partial t}+2 u f^{\prime}\left[u f^{\prime \prime} \frac{\partial \eta}{\partial x}+f^{\prime} \frac{\partial u}{\partial x}\right]+u f^{\prime}\left[-\sqrt{\frac{2}{m+1}} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}}\left(\frac{\partial f}{\partial \eta}+\frac{m-1}{m+1} \frac{\partial \eta f^{\prime}}{\partial y}\right)\right]+ \\
{\left[-\sqrt{\frac{2}{m+1} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}}\left(\frac{\partial f}{\partial y}+\frac{m-1}{m+1} \eta f^{\prime}\right)}\left(u f^{\prime \prime} \frac{\partial \eta}{\partial y}\right)\right]=-\frac{1}{\rho} \frac{v x^{m}}{\sigma^{m+1}} \frac{v x^{m}}{\sigma^{m+1}} \frac{m}{x}+} \tag{4.10}\\
v\left[u f^{\prime \prime} \frac{\partial^{2} \eta}{\partial y^{2}}+\frac{\partial \eta}{\partial y} u f^{\prime \prime} \frac{\partial \eta}{\partial y}\right]-\frac{\delta B_{0}^{2}}{\rho}\left(U f^{\prime}-u\right)
\end{array}\right\}
$$

By definition, $U=\frac{v x^{m}}{\sigma^{m+1}}$ and is common throughout the terms in equation (4.10) and so we divide through to have;

$$
\begin{align*}
& f^{\prime \prime} \frac{\partial \eta}{\partial t}+f^{\prime}\left(\frac{m-1}{m+1}\right) \frac{\partial \delta}{\partial t}+2 u f f^{\prime \prime} \frac{\partial \eta}{\partial y}+2\left(f^{\prime}\right)^{2} \frac{\partial u}{\partial x}+\left[-\sqrt{\frac{2}{m+1}} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}}\right] f \frac{\partial \eta}{\partial y} \frac{\partial \eta}{\partial y}+ \\
& {\left[-\sqrt{\left.\frac{2}{m+1} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}}\left(\frac{m-1}{m+1}\right)\left(f^{\prime} f^{\prime \prime} \frac{\partial \eta}{\partial y}\right)\right]=-u \frac{1}{\rho} \frac{v x^{m}}{\sigma^{m+1}} \frac{m}{x}+v f^{\prime \prime} \frac{\partial^{2} \eta}{\partial y^{2}}+v f^{\prime \prime \prime}\left(\frac{\partial \eta}{\partial y}\right)^{2}-}\right.} \tag{4.11}\\
& \frac{\delta B_{0}^{2}}{\rho u} \sin ^{2} \alpha\left(f^{\prime}-1\right)
\end{align*}
$$

The derivatives in equation (4.11) are obtained by partially differentiating as follows

$$
\left.\begin{array}{l}
\frac{\partial \eta}{\partial t}=y \sqrt{\frac{m+1}{2}} \sqrt{x^{m-1}} \frac{\partial}{\partial t} \delta^{\frac{-m-1}{2}}=y \sqrt{\frac{m+1}{2}} \sqrt{x^{m-1}}\left(\frac{-m-1}{2}\right)=\frac{\eta}{\delta}\left(\frac{-m-1}{2}\right) \frac{\partial \delta}{\partial t} \\
\frac{\partial \eta}{\partial x}=y \sqrt{\frac{m+1}{2}} \frac{1}{\sqrt{\delta^{m+1}}} \frac{\partial}{\partial x} x^{\frac{m-1}{2}}=y \sqrt{\frac{m+1}{2}} \frac{1}{\sqrt{\delta^{m+1}}} \frac{-m-1}{2} x^{\frac{m-3}{2}} \tag{4.12}\\
\frac{\partial u}{\partial x}=\frac{v}{\delta^{m+1}} m x^{m-1}=\frac{v x^{m}}{\delta^{m+1}} \frac{m}{x} \\
\frac{\partial \eta}{\partial y}=\sqrt{\frac{m+1}{2}} \sqrt{\frac{x^{m-1}}{\delta^{m+1}}}, \frac{\partial^{2} \eta}{\partial y^{2}}=0
\end{array}\right\}
$$

$$
\begin{aligned}
& \frac{v x^{m}}{\delta^{m+1}} \eta \frac{2}{m+1} \frac{\delta^{m+1}}{m+1} v x^{-\frac{1}{2}}=\frac{4 \eta}{m+1} x^{-\frac{1}{2}} \\
& x^{\frac{m}{2}-\frac{3}{2}}=x^{\frac{m-1}{2}-\frac{1}{2}}
\end{aligned}
$$

Similarly,

$$
\begin{align*}
& 2\left[\frac{v x^{m}}{\delta^{m+1}}\right] y \sqrt{\frac{m+1}{2}} \frac{1}{\sqrt{\delta^{m+1}}}\left(\frac{-m-1}{2}\right) x^{\frac{m}{2}-\frac{3}{2}}, 2\left[\frac{v x^{m}}{\delta^{m+1}}\right] \eta\left(\frac{-m-1}{2}\right) x^{-\frac{1}{2}}=\frac{2 v m}{m+1} \tag{4.13}\\
& \frac{v x^{m}}{\delta^{m+1}} \frac{m}{x}=U \frac{m}{x}
\end{align*}
$$

Substituting equations (4.12) and (4.13) in equation (4.11) we have;

$$
\left.\begin{array}{l}
\frac{\eta^{2}}{y^{2}} f^{\prime \prime \prime}-v \frac{\eta^{2}}{y^{2}} f f^{\prime \prime}+u \frac{m}{x} \frac{\eta^{2}}{y^{2} v}-2 u \frac{m}{x} \frac{\eta^{2}}{y^{2} v}\left(f^{\prime}\right)^{2}+\frac{2 v m}{m+1} v \frac{\eta^{2}}{y^{2}}-2 v \frac{\eta^{2}}{y^{2}} \frac{\delta^{m+1}}{v x^{m-1}} \\
-2 v \frac{\eta^{2}}{y^{2}} \frac{\delta^{m+1}}{v x^{m-1}} f^{\prime} v \frac{\eta^{2}}{y^{2}}-\frac{\delta^{m+1}}{v x^{m-1}} f^{\prime} v \frac{\eta^{2}}{y^{2}} \eta f^{\prime}-\frac{2 v}{m+1} v \frac{\eta^{2}}{y^{2}} \delta \frac{B_{0}^{2}}{\rho u} \sin ^{2} \alpha\left(f^{\prime}-1\right)^{2}=0 \tag{4.14}
\end{array}\right\}
$$

Since $v \frac{\eta^{2}}{y^{2}}$ is common for all terms in equation (4.11) we divide through to have

$$
\begin{equation*}
f^{\prime \prime \prime}+f f^{\prime \prime}+\frac{2 m}{m+1}-\frac{2 m}{m+1} f^{\prime 2}-\left(\frac{\delta^{m+1}}{v x^{m}}\right)\left(2-2 f^{\prime}-\eta f^{\prime \prime}\right)-\frac{2}{m+1} H a^{2} \sin ^{2} \alpha\left(f^{\prime}-1\right)=0 \tag{4.15}
\end{equation*}
$$

But

$$
\begin{align*}
& u \frac{m}{x} \div v \frac{\eta^{2}}{y^{2}}=u \frac{y^{2}}{\eta^{2}}=\frac{2 m}{m+1}==\frac{v x^{m}}{\delta^{m+1}} \frac{2}{m+1} \frac{\delta^{m+1}}{v x^{m}} \frac{1}{v} \frac{m}{x}=\frac{2 x^{m}}{m+1} \frac{m}{x}= \tag{4.16}\\
& x^{m} \frac{2}{m+1} \frac{m}{x} \frac{1}{x^{m-1}}=\frac{2 x}{m+1} \frac{m}{x}=\frac{2 m}{m+1}=\beta
\end{align*}
$$

Hence equation (3.16) is transformed to;

$$
\begin{equation*}
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta\left(\left(1-f^{\prime 2}\right)-\left(\frac{\delta^{m+1}}{v x^{m}}\right)\left(2-2 f^{\prime}-\eta f^{\prime \prime}\right)-\frac{2}{m+1} H a^{2} \sin ^{2} \alpha\left(f^{\prime}-1\right)=0\right. \tag{4.17}
\end{equation*}
$$

In equation (3.18) we obtain the following equivalences;
We first defining T as,

$$
\begin{equation*}
\theta=\frac{T-T_{\infty}}{T_{w}-T_{\infty}} \rightarrow T=\theta\left(T_{w}-T_{\infty}\right)+T_{\infty} \tag{4.18}
\end{equation*}
$$

Equation (3.18) is simplified by partially differentiating to obtain the following;

$$
\left.\begin{array}{l}
\frac{\partial T}{\partial t}=U \frac{\partial}{\partial t}(\theta)\left(T_{w}-T_{\infty}\right)+T_{\infty}=\left(T_{w}-T_{\infty}\right) \frac{\partial \theta}{\partial t}=\left(T_{w}-T_{\infty}\right) \frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial t}= \\
\left(T_{w}-T_{\infty}\right)\left(\frac{-m-1}{2}\right) \theta^{\prime} \frac{\eta}{\sigma} \frac{\partial \sigma}{\partial t} \\
\frac{\partial(U T)}{\partial x}=U \frac{\partial(T)}{\partial x}+T \frac{\partial(T)}{\partial x}=U f^{\prime} \frac{\partial}{\partial x}\left(\theta\left(\left(T_{w}-T_{\infty}\right)+\right) T_{\infty}\right)+\left(\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right) \frac{\partial}{\partial x} u f^{\prime}+ \tag{4.20}\\
u f^{\prime}\left(T_{w}-T_{\infty}\right) \frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial x}+\left(\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right) \frac{v x^{m}}{\sigma^{m+1}} f^{\prime \prime}-\frac{v x^{m}}{\sigma^{m+1}} \frac{m}{x} f
\end{array}\right\}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

$$
\begin{equation*}
\frac{\partial T}{\partial y}=\frac{\partial}{\partial y}\left(\left(\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right)\right) \tag{4.21}
\end{equation*}
$$

But from equations (4.19) and (4.20), $u=\frac{v x^{m}}{\sigma^{m+1}} \frac{\partial \eta}{\partial y}=\sqrt{\frac{m+1}{2}} \sqrt{\frac{x^{m-1}}{\delta^{m+1}}}, \frac{\partial \theta}{\partial \eta}=\theta^{\prime}$ and
$\frac{\partial \eta}{\partial x}=y \sqrt{\frac{m+1}{2}} \frac{1}{\sqrt{\delta^{m+1}}} \frac{\partial}{\partial x} x^{\frac{m-1}{2}}$
The first term on the RHS of equation 3.18 becomes
$\frac{T_{w}-T_{\infty}}{\rho c_{p}} k_{\infty}\left[\frac{\partial \theta}{\partial y} \frac{\partial}{\partial y}(1+\gamma \theta)+(1+\gamma \theta) \frac{\partial^{2} \theta}{\partial y^{2}}\right]=\frac{T_{w}-T_{\infty}}{\rho c_{p}} k_{\infty}\left[\begin{array}{c}\theta^{\prime} \frac{\partial \eta}{\partial y} \gamma \theta^{\prime} \frac{\partial \eta}{\partial y}+ \\ (1+\gamma \theta) \frac{\partial}{\partial y} \theta^{\prime} \frac{\partial \eta}{\partial y}\end{array}\right]=$
$\frac{T_{w}-T_{\infty}}{\rho c_{p}} k_{\infty}\left(\theta^{\prime}\right)$

$$
\left.\begin{array}{l}
\frac{\partial(V T)}{\partial x}=V \frac{\partial(T)}{\partial x}+T \frac{\partial(V)}{\partial x}=V \frac{\partial}{\partial x}\left(\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right)+\left(\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right) \frac{\partial}{\partial x}(V) \\
=V\left(T_{w}-T_{\infty}\right) \frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial x}+\left[\left(T_{w}-T_{\infty}\right) \theta+T_{\infty}\right] \frac{\partial}{\partial x}\left[\sqrt{\frac{m+1}{2}} \frac{2}{m+1} v x \delta^{\frac{m-1}{\frac{m+1}{2}}}\left(f+\frac{m-1}{m+}\right)\right] \tag{4.23}
\end{array}\right\}
$$

$\frac{\partial v}{\partial x}=f\left[(-) \sqrt{\frac{m+1}{2}} \frac{2}{m+1} \frac{v x^{\frac{m-3}{2}}}{\sqrt{\delta^{m+1}}} \frac{m+1}{2} \frac{m-1}{2}\right]-\left[\frac{(m-1) \eta}{4} f^{\prime}\right]\left[\sqrt{\frac{2}{m+1}} \frac{v x^{\frac{m-3}{2}}}{\sqrt{\delta^{m+1}}}(m-1)\right]$
Substituting equations (4.19)-(4.24) into (3.18), we obtain;

$$
\left.\begin{array}{l}
\left(T_{w}-T_{\infty} \frac{\partial \theta}{\partial \eta} \frac{\eta}{\delta}\left(\frac{-m-1}{2}\right) \frac{\partial \delta}{\partial t}+U f^{\prime}\left(T_{w}-T_{\infty}\right) \frac{\partial \theta}{\partial \eta} y \sqrt{\frac{m+1}{2}} \frac{1}{\sqrt{\delta^{m+1}}} \frac{m-1}{2} x^{\frac{m-3}{2}}-\right. \\
\sqrt{\frac{2}{m+1}} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sqrt{\delta^{m+1}}}\left(f+\frac{m-1}{m+1} \eta f\right)\left(T_{w}-T_{\infty}\right) \frac{\partial \theta}{\partial \eta} \sqrt{\frac{m+1}{2}} \frac{1}{\sqrt{\delta^{m+1}}} \frac{m-1}{2} x^{\frac{m-3}{2}}+ \tag{4.25}\\
\left(T_{w}-T_{\infty}\right) \theta+T_{\infty} \frac{\left(T_{w}-T_{\infty}\right)}{\rho c_{p}} k_{\infty}\left[\left(\theta^{\prime}\right)^{2}\right] \frac{v \eta^{2}}{y^{2}}+(1+v \theta) \frac{v \eta^{2} \theta^{\prime \prime}}{y^{2}}+ \\
\frac{\mu}{\rho c_{p}}\left[u^{2}\right] f^{\prime \prime 2} \frac{m-1}{2} \frac{x^{m-1}}{\delta^{m+1}}+u \frac{B_{0}^{2}}{\rho c_{p}}\left(f^{\prime}-1\right)
\end{array}\right\}
$$

Substituting the following equivalences into equation (4.25)

$$
\begin{aligned}
& E_{c}=\frac{U}{C_{p}\left(T_{w}-T_{\infty}\right)} \\
& p r_{\infty}=\frac{\mu c_{p}}{k_{\infty}}, \mu=v p \rightarrow \frac{\mu c_{p}}{p r_{\infty}}=k_{\infty}
\end{aligned}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 5, Issue 2, pp: (40-51), Month: October 2017 - March 2018, Available at: www.researchpublish.com

And dividing the equation by $\frac{\left(T_{w}-T_{\infty}\right)}{\rho c_{p}} k_{\infty}(1+v \theta) \frac{\eta^{2}}{y^{2}}$ we obtain the following terms

$$
\begin{equation*}
\theta^{\prime 2} \times \frac{\left(T_{w}-T_{\infty}\right)}{\rho c_{p}} \times \frac{y^{2}}{(1+v \theta) \eta^{2}}=\frac{\left(T_{w}-T_{\infty}\right)}{\rho c_{p}} \times \frac{y^{2}}{(1+v \theta) \eta^{2}} \frac{v \eta^{2}}{\frac{m+1}{2} \frac{x^{m-1}}{\delta^{m+1}}}=\frac{v}{1+v} \theta^{\prime 2} \tag{4.26}
\end{equation*}
$$

$u \frac{B_{0}^{2}}{\rho c_{p}} \frac{\left(f^{\prime}-1\right)^{2}}{1+v \theta} \frac{\left(T_{w}-T_{\infty}\right)}{\rho c_{p}} k_{\infty} \frac{y^{2}}{\eta^{2}}, k_{\infty}=\rho c_{p} \Rightarrow \frac{p r_{\infty}}{(1+v \theta)} E_{c} H a^{2}\left(f^{\prime}-1\right)^{2}$
$\frac{\mu}{\rho c_{p}}\left[u^{2}\right] f,{ }^{, 2} \frac{m-1}{2} \frac{x^{m-1}}{\delta^{m+1}} \div \frac{\left(T_{w}-T_{\infty}\right)}{\rho c_{p}} k_{\infty}(1+v \theta) \frac{\eta^{2}}{y^{2}}=\frac{f^{\prime \prime 2}}{(1+v \theta)} \frac{\mu c_{p}}{c_{p}\left(\left(T_{w}-T_{\infty}\right)\right) k_{\infty}}$
$=\frac{p r_{\infty}}{(1+v \theta)} E_{c} f^{\prime \prime 2}$
$\frac{\delta^{m}}{v x^{m-1}} \frac{\partial \delta}{\partial t} \frac{v \rho c_{p}}{k_{\infty}} \eta\left(\theta^{\prime}\right), v \rho=\mu \rightarrow \frac{\delta^{m}}{v x^{m-1}} \frac{\partial \delta}{\partial t} \frac{\mu c_{p}}{k_{\infty}} \eta\left(\theta^{\prime}\right) \frac{v \rho c_{p}}{k_{\infty}(1+v \theta)} f\left(\theta^{\prime}\right)=\frac{p r_{\infty}}{(1+v \theta)} f \theta^{\prime}$
Putting the terms in equations (4.26-4.29), equation (3.18) becomes;

$$
\begin{align*}
& \theta^{\prime \prime}+\frac{v}{1+v} \theta^{\prime 2}+\frac{p r_{\infty}}{(1+v \theta)} f \theta^{\prime}+\frac{\delta^{m}}{v x^{m-1}} \frac{\partial \delta}{\partial t} \frac{\mu c_{p}}{k_{\infty}} \eta\left(\theta^{\prime}\right)+\frac{p r_{\infty}}{(1+v \theta)} E_{c} f^{\prime \prime 2}+ \tag{4.30}\\
& \frac{p r_{\infty}}{(1+v \theta)} E_{c} H a^{2} \sin ^{2} \alpha\left(f^{\prime}-1\right)^{2}=0
\end{align*}
$$

Equation (3.21) is transformed to an ODE term by term as follows:

$$
\begin{align*}
& \frac{\partial C}{\partial t}=\frac{\partial}{\partial t}\left(\phi\left(c_{w}-c_{\infty}\right)+c_{\infty}\right)=\left(c_{w}-c_{\infty}\right) \frac{\partial \phi}{\partial t}=\left(c_{w}-c_{\infty}\right) \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial t}, b u t, \frac{\partial \eta}{\partial t}=\frac{\eta}{\delta}\left(\frac{-m-1}{2}\right) \frac{\partial \delta}{\partial t}(4.31) \\
& \frac{\partial C}{\partial t}=\left(c_{w}-c_{\infty}\right) \frac{\eta}{\delta}\left(\frac{-m-1}{2}\right) \frac{\partial \delta}{\partial t} \phi^{\prime}, \frac{\partial \phi}{\partial \eta}=\phi^{\prime} \tag{4.32}\\
& \frac{\partial(u C)}{\partial x}=\frac{u \partial C}{\partial x}+\frac{C \partial(u)}{\partial x}=U f^{\prime \prime}\left(C_{w}-C_{\infty}\right) \phi^{\prime}\left[y \sqrt{\frac{m+1}{2}} \frac{1}{\sqrt{\delta^{m+1}}} \frac{-m-1}{2} x^{\frac{m-3}{2}}\right]+ \\
& \left(C_{w}-C_{\infty}\right) \phi+C_{\infty}\left[\left(u f^{\prime \prime}+f^{\prime} \frac{v x^{m}}{\delta^{m+1}} \frac{m}{x}\right)\right] \tag{4.33}\\
& \frac{\partial(v C)}{\partial y}=V \frac{\partial}{\partial y}\left(\phi\left(C_{w}-C_{\infty}\right)+C_{\infty}\right)+\left(\phi\left(C_{w}-C_{\infty}\right)+C_{\infty}\right) \frac{\partial v}{\partial y}=v \frac{\partial}{\partial y}\left(\phi\left(C_{w}-C_{\infty}\right)+C_{\infty}\right)+ \\
& \left.\left.\left(\phi\left(C_{w}-C_{\infty}\right)+C_{\infty}\right)\right]-\sqrt{\frac{2}{m+1}} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\sigma^{\frac{m+1}{2}}}\left(\frac{\partial f}{\partial \eta}+\frac{m-1}{m+1} \frac{\partial \eta f}{\partial y}\right)\right] \tag{4.34}\\
& \frac{\partial(v C)}{\partial y}=v\left(\phi^{\prime}\left(C_{w}-C_{\infty}\right)+C_{\infty}\right)+\left(\phi\left(C_{w}-C_{\infty}\right)+C_{\infty}\right)\left[-\sqrt{\left.\frac{2}{m+1} \frac{m+1}{2} \frac{v x^{\frac{m-1}{2}}}{\frac{\sigma^{\frac{m+1}{2}}}{\sigma^{2}}}\left(f^{\prime}+\frac{m-1}{m+1} \frac{\partial \eta^{2} f^{\prime \prime}}{\partial y}\right)\right]}\right. \tag{4.35}
\end{align*}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 5, Issue 2, pp: (40-51), Month: October 2017 - March 2018, Available at: www.researchpublish.com
$D \frac{\partial^{2} C}{\partial y^{2}}=D \frac{\partial}{\partial y}\left[\frac{\partial}{\partial \eta} \phi\left(C_{w}-C_{\infty}\right)+C_{\infty} \frac{\partial \eta}{\partial y}\right]=D \frac{\partial}{\partial \eta}\left[\left(\phi^{\prime}\left(C_{w}-C_{\infty}\right)\right)\right] \frac{\eta}{y} \frac{\partial \eta}{\partial y}=$
$D \frac{\partial}{\partial \eta}\left[\left(\phi^{\prime}\left(C_{w}-C_{\infty}\right)\right)\right] \frac{\eta}{y} \frac{\eta}{y}=D\left[\left(\left(C_{w}-C_{\infty}\right)\right)\right] \phi^{\prime \prime} \frac{\eta}{y} \frac{\eta}{y}\left(\phi^{\prime}\right)(0)=D\left(C_{w}-C_{\infty}\right) \phi^{\prime \prime} \frac{\eta^{2}}{y^{2}}$

This is the diffusion term
$\frac{\partial T}{\partial y}\left(V_{T} C\right)=\frac{K V_{T} C}{T}, \frac{\partial T}{\partial y}\left(\frac{K V_{T} C}{T}\right)=-K V \frac{\partial}{\partial y}\left[C \frac{\partial T}{\partial y}\right]=-K V\left[\begin{array}{l}\frac{\partial T}{\partial y} \cdot \frac{\partial \frac{C T}{T}}{\partial y}+ \\ \frac{C}{T} \frac{\partial^{2} T}{\partial y^{2}}\end{array}\right]=$
$K V\left[\frac{\partial}{\partial \eta} \theta\left(T_{w}-T_{\infty}\right)+T_{\infty} \frac{\partial \eta}{\partial y} \cdot \frac{\partial \frac{C T}{T}}{\partial \eta} \frac{\partial \eta}{\partial y}+\frac{C}{T} \frac{\partial}{\partial y}\right]$
But $\frac{\partial \frac{C T}{T}}{\partial \eta}=\frac{T \frac{\partial C}{\partial \eta}-C \frac{\partial T}{\partial \eta}}{T^{2}}$ therefore equation 4.37 becomes
$\frac{\partial T}{\partial y}\left(V_{T} C\right)=-K V\left[\frac{\eta^{2}}{y^{2}} \theta^{\prime}\left(T_{w}-T_{\infty}\right) \frac{T \frac{\partial C}{\partial \eta}-C \frac{\partial T}{\partial \eta}}{T^{2}}+\frac{C}{T} \frac{\partial}{\partial \eta}\left[\theta^{\prime}\left(T_{w}-T_{\infty}\right) \frac{\eta}{y}\right] \cdot \frac{\partial \eta}{\partial y}\right]$
$\frac{\partial \frac{C}{T}}{\partial \eta}=\frac{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]-\left[\phi\left(C_{w}-C_{\infty}\right)+C_{\infty}\right] \phi^{\prime}\left[T_{w}-T_{\infty}\right]}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}}, \div T_{w}-T_{\infty}$
$-K V\left[\frac{\eta^{2}}{y^{2}} \theta^{\prime} \frac{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]-\left[\phi\left(C_{w}-C_{\infty}\right)+C_{\infty}\right] \phi^{\prime}\left[T_{w}-T_{\infty}\right]}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}}\right]+\frac{\phi\left(C_{w}-C_{\infty}\right)}{\theta\left(T_{w}-T_{\infty}\right)} \phi^{\prime \prime} \frac{\eta^{2}}{y^{2}}$
When we divide the equationby $D\left(C_{w}-C_{\infty}\right) \frac{\eta^{2}}{y^{2}}$;
First term reduces to $\phi^{\prime \prime}$, second term becomes $\frac{v}{D} f \phi^{\prime}$ but $\frac{v}{D}=S_{c}$ hence $S_{c} \phi^{\prime}$
The third term becomes

$$
\left.\begin{array}{l}
K V\left[\frac{\eta^{2}}{y^{2}} \theta^{\prime} \frac{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty} \llbracket \phi^{\prime}\left(C_{w}-C_{\infty}\right)+C_{\infty}\right]-\phi\left[C_{w}-C_{\infty}+\right] C_{\infty}\left(\phi^{\prime}\right)\left(T_{w}-T\right)_{\infty}}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}}\right]+ \\
\frac{\phi\left(c_{w}-c_{\infty}\right)}{\theta\left(T_{w}-T_{\infty}\right)} \phi^{\prime \prime} \frac{\eta^{2}}{y^{2}} \div D\left(C_{w}-C_{\infty}\right) \frac{\eta^{2}}{y^{2}} \tag{4.40}\\
\left.=-K s_{c}\left[\theta^{\prime}\right] \frac{\eta^{2}}{y^{2}} \theta^{\prime} \frac{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]\left[\phi^{\prime}\left(C_{w}-C_{\infty}\right)+c_{\infty}\right]-\phi\left[C_{w}-C_{\infty}+\right] C_{\infty}\left(\phi^{\prime}\right)\left(T_{w}-T\right)_{\infty}}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}}\right]
\end{array}\right\}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Isolating the terms in equation (4.40) we obtain,

$$
\begin{align*}
& -K s_{c}\left[\frac{\phi\left[C_{w}-C_{\infty}\right]}{\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\left(C_{w}-C_{\infty}\right)}\right] \theta^{\prime \prime} \tag{4.41}\\
& -K s_{c}\left[\frac{\phi \theta^{\prime \prime}}{\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}}\right]+\left[\frac{\theta^{\prime \prime} C_{\infty}}{\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\left(C_{w}-C_{\infty}\right)}\right]---a \\
& K s_{c} \frac{\left.\left.\llbracket \theta \phi^{\prime} \theta^{\prime}\left(T_{w}-T_{\infty}\right)+T_{\infty}\right] \llbracket+T_{\infty}\left(c_{w}-c_{\infty}\right)\right]}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}\left(c_{w}-c_{\infty}\right)} \\
& K s_{c} \frac{\left.\left.\llbracket \theta \phi^{\prime} \theta^{\prime}\right]\right]}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}\left(C_{w}-C_{\infty}\right)}-----b \\
& K s_{c}\left[\theta \theta^{\prime 2} \frac{\left(\left(C_{w}-C_{\infty}\right)+C_{\infty}\right)\left(T_{w}-T_{\infty}\right)}{\left.\left(C_{w}-C_{\infty}\right)\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}\right]}=K s_{c}\left[\theta \theta^{\prime 2} \frac{\left(\left(C_{w}-C_{\infty}\right)+C_{\infty}\right) \times\left(T_{w}-T_{\infty}\right)}{\left(C_{w}-C_{\infty}\right) \times\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]^{2}}\right]\right. \\
& K s_{c} \theta \theta^{\prime 2}\left[1+N_{c}\right] \times \frac{T_{w}-T_{\infty}}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]} \\
& K s_{c} \theta \theta^{\prime 2}\left[1+N_{c}\right] \times \frac{1}{N_{t}} \frac{1}{\left[\theta\left(T_{w}-T_{\infty}\right)+T_{\infty}\right]}--------c
\end{align*}
$$

Simplifying and rearranging we now obtain
$\phi^{\prime \prime}+s_{c} f \phi^{\prime \prime}+s_{c} \lambda \eta \phi+\frac{K s_{c}}{N_{t}+\theta}\left[\left[\left(N_{c}+\phi\right)\right] \theta^{\prime \prime}+\theta^{\prime} \phi^{\prime}-\left(\frac{N_{c}+\phi^{\prime}}{N_{t c}+\theta}\right) \theta^{\prime 2}\right]=0$
The transformed boundary conditions are as follows
$f=f_{w}, f^{\prime}=0, \theta=1, \phi=1$ At $\eta=0$ and $f^{\prime}=0, \phi=0$ as $\eta \rightarrow \infty$

To locally make the equations similar, and using the defined dimensionless parameters, we let, $\frac{\delta^{m}}{v m^{m-1}} \frac{d \delta}{d t}=\lambda$ hence the equations $(4.17,4.30,4.42)$ become $(4.44,4.4 .45,4.46)$ respectively as shown below

$$
\begin{align*}
& f^{\prime \prime \prime}+f f^{\prime \prime}+\beta\left(1-f^{\prime 2}\right)-\left(\frac{\sigma^{m+1}}{v x^{m-1}}\right)\left(2-2 f^{\prime}-\eta f^{\prime \prime}\right)-\frac{2}{m+1}(H a \sin \alpha)^{2}\left(f^{\prime}-1\right)=0 \tag{4.44}\\
& \left.\theta^{\prime \prime}+\frac{v}{1+v} \theta^{\prime 2}+\frac{p r_{\infty}}{(1+v \theta)} f \theta^{\prime}+\frac{\delta^{m}}{v x^{m-1}} \frac{\partial \delta}{\partial t} \frac{\mu c_{p}}{k_{\infty}} \eta\left(\theta^{\prime}\right)+\frac{p r_{\infty}}{(1+v \theta)} E_{c} f^{\prime \prime 2}+\right] \tag{4.45}\\
& \frac{p r_{\infty}}{(1+v \theta)} E_{c}(H a \sin \alpha)^{2}\left(f^{\prime}-1\right)^{2}=0 \\
& \phi^{\prime \prime}+s_{c} f \phi^{\prime}+s_{c} \lambda \eta \phi+\frac{K s_{c}}{N_{t}+\theta}\left[\left[\left(N_{c}+\phi\right)\right] \theta^{\prime \prime}+\theta^{\prime} \phi^{\prime}-\left(\frac{N_{c}+\phi^{\prime}}{N_{t c}+\theta}\right) \theta^{\prime 2}\right]=0 \tag{4.46}
\end{align*}
$$

We then reduce the high order equations (4.49-4.51) to first order.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 5, Issue 2, pp: (40-51), Month: October 2017 - March 2018, Available at: www.researchpublish.com

We let,

$$
\left.\begin{array}{l}
\begin{array}{l}
y_{1}= \\
y_{2}= \\
y^{\prime}
\end{array} \\
y_{3}= \\
f^{\prime} \\
y_{4}= \\
f^{\prime \prime} \\
y_{5}= \\
y_{6}= \\
\theta^{\prime} \\
y_{7}= \\
\phi^{\prime}
\end{array}\right\} \begin{aligned}
& \phi_{3}=y^{\prime \prime \prime}=-y_{1} y_{3}-\beta\left(1-y_{2}^{2}\right)+\lambda\left(2-2 y_{2}-\eta y_{3}\right)-\frac{2}{m+1}(H a \sin \alpha)^{2}\left(y_{2}-1\right)=0 \tag{4.51}\\
& \phi^{\prime \prime}=y_{7}^{1}=-s_{c} y y_{7}-s_{c} \lambda \eta y_{7}-\frac{K s_{c}}{N_{t}+y_{4}}\left[\left[\left(N_{c}+y_{6}\right)\right] y+y_{5} y_{7}-\left(\frac{N_{c}+y_{6}}{N_{t c}+y_{4}}\right) y_{7}^{2}\right]=0 \\
& y_{5}=\theta^{\prime \prime}=\frac{-p r_{\gamma} y y_{5}-\lambda p r_{\gamma} \eta y_{5}-p r_{\gamma} E_{c}\left(y_{3}\right)^{2}-p r_{\gamma} E_{c}(H a \sin \alpha)^{2}\left(y^{2}-1\right)^{2}}{1+\frac{\gamma}{1+\gamma y_{3}}}
\end{aligned}
$$

Effects of variation of angle of inclination α

Effect of variation of α on velocity:

Effect of variation of α on concentration:

Effect of variation of α on temperature:

It is clear from figure that increase in inclined angle increases the velocity profiles. It is evident from figures that increase in inclined angle, temperature and the concentration profiles of the fluid decrease. This is because increase in the angle of inclination helps to reduce the thermal and concentration boundary layer thickness whose effect is reduction in temperature and concentration respectively.

Table 1:Computation showing the effect of variation of angle of inclination (α) on skin friction, local Nusselt number and thermophoretic particle deposition V_{d}

α	cf	Nu	Vd
$\frac{\pi}{2}$	0.1117	19.5410	50.0531
$\frac{\pi}{3}$	0.0996	19.4184	49.7522
$\frac{\pi}{6}$	0.0627	18.9556	48.6499

The increase in angle of inclination increases skin friction, the Nusselt number but reduces thermophoretic deposition.

REFERENCES

[1] Kandasamy. R., P. K. (2005). Effects of chemical reaction, heat and mess transfer along a wedge with heat source and concentration in the presence of suction and injection. Int. J. Heat mass Trans-48(7) , Pp. 1388-1394.
[2] Kayazuki.U. (1991). Inertia Effects on 2-dimensionsal magneto hydrodynamic channel flow under rarvelling Sine wave magnetic field:. Phys. Fluids A, vol. 3, No. 12, , pp. 3107-3116.
[3] Praveen K. Namburu, D. K. (2009). Numerical study of Tarbulent flow and heat transfer characteristics of Naroflorids considering variable Properties. Fairbanks:: International Journal of Heat ad Mass Transfer, 58(21-22) Pp. 4728-4740.
[4] Rahman. (2010). Effects of thermophonesis on forced convection lamind flow of a viscous incompressible fluid over a rotating disk. Mech. Res-Commun-37, , 598-603.
[5] Sattar. M.A. (2013). A local similarity transformal for the insteady 2- dimensional hydrodynamic boundary layer squatins, of a flow part a wedge. Int. Journal. Appl. Math and Mech , Pp. 15-28.

